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Abstract. The modeling of nonlinear dynamical systems is considered in this paper. It is assumed that only
sampled input/output data of the system under investigation are available. The most popular way for creating a
black-box-model is a common nonlinear difference-equation-approach. Some basic features of such an
approach are related to the corresponding properties of a filter-chain model consisting of a linear dynamical
system followed by a nonlinear readout map. The filter-chain model has some very good structural
characteristics but needs to be optimized with respect to its approximation efficiency. So the construction of a
suitable filter system - which enables an efficient modeling - and the construction of an adjusted nonlinear
readout map from a given data set is considered.
To illustrate the relation between a proper filter selection and an efficient modeling some theoretical
reflections concerning an optimal filter design for an approximation of a given nonlinear system are presented
afterwards. The both discussed methods are based on a VOLTERRA-Kernel representation and a state space
description of the plant and yields to an adjusted filter-chain model and a bilinear filter model respectively.

1. The nonlinear difference-equation-approach and the filter-chain model

Within this section both models are established and compared with respect to some basic features arising from
its structural properties.
Concerning the assumed time-continuous character of the process it is fair to ask for an appropriate time-
continuous model. To deal with the acquired sampled input-output data a corresponding time-discrete version
of the continuous model is necessary. In general it is impossible to obtain an analytic discrete version of a
time-continuous differential model and so a quasi continuous simulation (with a numerical integration) is
necessary. To avoid such a time consuming approximation it is common practice to cancel the request for a
time-continuous model and to establish a time-discrete difference-equation model structure a priori (Fig. 1).
Unfortunately, once the parameterization is done the model cannot be re-mapped into a continuous form.

Fig. 1 Nonlinear difference-equation model

Fig. 2 General form of the nonlinear filter-chain-model

On the contrary the time continuous filter-chain model - its general form consists of a linear dynamical system
followed by a nonlinear readout map - can be exactly mapped into a time discrete analytic equivalent by
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assuming a hold element for the interpolation of the input signal between two samples. So the continuous
model can be parametrized by using the fitting properties of the time-discrete equivalent (Fig. 2) .
Considering stability properties, aspects of parameter estimation and occasions for a structure selection within
the static nonlinearity one has to admit that the filter-chain model offers excellent features (Table 1).
Especially the parameterization of the difference equation model with respect to an equation error is critical
because - in contrast to linear theory - there is only a mysterious link between equation and output error. Even
the output error can become infinite (caused by an instable model) while the equation error is sufficient small
[5].

Table 1 Comparison of difference-equation model and filter-chain model

feature difference-equation model filter-chain model
relation between time
continuous and time
discrete model

no analytic discrete equivalent existing;
numerical integration with respect to a
selected interpolation element necessary

analytic calculation with respect to
a selected interpolation element
possible

guarantee of global
asymptotic stability

an a posteriori proof generally impossible;
an a priori guarantee yields to unfeasible
approximation restrictions

stability of the linear dynamic part
sufficient and easy to guarantee

parameterization of the
nonlinearity

feasible with respect to an insufficient
equation error; very difficult with respect
to the output error

feasible with respect to the output
error

structure selection only possible with respect to an
insufficient equation error

possible with respect to the output
error

considered process class nonlinear state space description with a
unique and always defined solution

fading memory systems [1]:
a unique stationary solution has to
be reached asymptotically for any
bounded input

While a lot of structural advances of the filter-chain model have been recognized, where is the drawback of this
approach? The answer can be found very easily by checking some aspects of approximation efficiency. In the
case of the difference-equation model the number of delay elements determining the input dimension of the
difference model is strongly related to the order of the process considered. It has to be increased only if the
output-map has not a unique inverse map. Unfortunately in the case of the filter-chain model the number of
filters and so the input dimension of the readout-map must generally tend to infinity for an exact
representation. But with an appropriate chosen filter system the input dimension can remain small while the
accuracy of the approximation is sufficient. So the construction of a suited filter-system is a milestone within
the estimation of a filter-chain model.

2. Identification of filter-chain models

The identification process involves the suitable determination of the eigenvalues of the filter and the
construction of an adjusted readout map.

The construction of a suited filter-system from measured input/output data
The most popular example of a simple not adjusted filter system (a simple tapped delay line) is involved in
VOLTERRA’s famous approach. Consequently a large number of delay-filters is required for a reasonably well
approximation and yields to a huge number of parameter to estimate within the polynomial readout map. One
can ameliorate this problem by replacing the tapped delay filters with other filters. If these filters are well
adjusted a reasonable reduction of the required number of states is possible. WIENERS’s model with
LAGUERRE filters or the use of KAUTZ filters [9] are examples of such well known filter systems. Recent
papers discussing the problem of a suited filter parameterization for an efficient approximation of linear
system [6] recommend adjustments based on the impulse response of the plant. For nonlinear systems only
rules of thumb concerning the transition time of the nonlinear plant are available [4]. Obviously such
recommendations are only helpful when the plant has dominant linear parts and weak nonlinearities. To deal
with the crucial problem of a suitable filter parametrization in a more general way a geometrical approach is
suggested now.



One possible approach for a filter-design based on measured process-data can be derived according to
geometrical reflections. The filter-operators of the model perform an embedding [7] of the input series into
the state-space of the model. The followed readout map provides a static mapping of this state-space to the
model output. To make the model output equal to the plant output one has to establish such an embedding which
allows a static mapping from state-space of the model to the plant output (apart from some measurement
disturbances). Hence a plot of the plant output versus the state-space of the model is useful to judge the
embedding quality because it has to prove a static dependence of the data. Fig. 3 shows embeddings with a first-
order low-pass-filter. While a low and a large time constant result in a very poor embedding a proper chosen
time constant yields to an appropriate arrangement of the data. For a further separation an embedding with two
filters is necessary. Similar the parameters of these filters have to be tuned in such a way that the embedded
data form a surface as flat as possible.

Fig. 3 Measured process output over filter-embedded input series

Summary, a model state-space must be created which yields to a unique assignment of the embedded input data
to the measured process output. The optimal model filters can be found by an optimization of the filter
parameters with respect to the „roughness“ of embedded data. Two proposals for the measurement of this
„roughness“ are shown in Fig. 4. While the box-counting method provides a cumulative estimation of local
variances a parametric measurement calculates the residuum of the embedded data with respect to a smooth
parametric approach.
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In praxis the demonstrated optimization might be limited to about two eigenvalues. A further suited embedding
can be achieved by a repeated use of the optimized eigenvalues in the sense of a filter-chain.

The construction of an adjusted readout map
After a suited filter system has been chosen or optimized an adjusted model output (readout map) must be
established. A simple but universal approach for an output map is given by
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were {ϕi} is a specific approximation basis. Personal preferences are crucial for the actual choice of a basis
(polynoms, radial basis functions, sigmoidal functions, wavelets, splines, walsh functions, ...) and further
discussion is superfluous without any a priori information of the function to be approximated.
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Although the choose of a suited filter system reduces the number of required states enormously (e.g. in
comparison with the classical VOLTERRA model) any nonlinear expansion will still yield to a large number of
p-parameters for an accurate approximation. Unfortunately the estimated number of parameters must be
limited for a good regression because of output disturbances. So an optimal collection of regressors finally to
represent the model has to be estimated using structure selection methods [3]. For the stepwise choice of most
important regressors from the basis-pool a forward regression algorithm [2] has been proved to be a suitable
one. The algorithm is useful to establish a ranked orthogonal regressor sequence. Finally the optimal number of
orthogonal regressor which has to be incorporated in the model must be determined. The recommended way of
cross-validation is a special generalization of PRESS-algorithm [2] where parts of the data are sequential
excluded from the parametrization process. The resulting parameter-sets will be applied on the removed data
part respectively. The partitioning of the data has to be done with respect to the excitation of the process and
includes disturbances. By monitoring this cross-validation error while the forward regression is in progress an
optimal model complexity can be found. So it is possible to establish an adjusted readout map with respect to
special signal considerations (measurement time, excitation, disturbances).

3. Derivation of suitable filter systems for the approximation of nonlinear systems

The previous given approaches for a filter design are based on measured input/output and are therefore suited
for an identification process. But for a good understanding of the relation between a proper filter
parametrization and an efficient modeling some theoretical reflections concerning an optimal filter design for
an effective approximation of a given nonlinear system are very useful.
Within this chapter two different approaches for the construction of an optimal filter system are presented. The
first method is based on a VOLTERRA kernel representation of the plant and results in a proper adjustment of a
first order filter for the approximation of the plant with a filter-chain model. The second calculation yields to a
bilinear filter system which eigenvalues are related to the eigenvalues of the linearized plant at the equilibrium
point.

Kernel approach
Starting with the LAPLACE representation of the VOLTERRA kernels of the plant
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one can replace the complex variables s with a filter operator F of a considered first order filter F(s). An
expansion of the resulting kernels as a TAYLOR series yields to
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which have a simple filter-chain representation (Fig. 5) [8]. Further the coefficients ci,cij, ... represent the
TAYLOR expansion of the required readout-map to be established.

Fig. 5 Special form of the nonlinear filter-chain-model

Mainly the c-coefficients depend on the parameters of the applied filter F resp. its impulse response f(t).
Hence the goal is a filter parametrization which yields to a fast decrease of the c’s towards zeros. This ensures
a feasible approximation quality even with only a few filters involved in the final model. Even though an
analytic estimation of an adjusted filter-set requires knowledge about the VOLTERRA kernels of the system to
be modeled this method yields to a good understanding of the relation between filter characteristics and
approximation efficiency.

CARLEMAN approach
The second approach is based on the state-space description of the analytic linear system
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The introduction of a new state vector ⊗x  which contains products of the original state up to a specific order
yields to a bilinear description
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of the above system. From this representation it is now possible to derive a kernel representation [8] which can
be realized as a junction of filter systems Si with a linear output map (Fig. 6). The eigenvalues Λ1 of the
systems S1 must be equal to the eigenvalues of the linearized plant at the equilibrium point. The system S2

consists of filters equal to those of system S1 and contains filters whose eigenvalues Λ 2 can be calculated by
summing the eigenvalues of S1 in pairs. The additional eigenvalues Λ 3 within the system S3 result in a further
pair-wise summation of the eigenvalues Λ 1 and Λ 2.

Fig. 6 Bilinear filter model

While the merely linear output map is an advantage of this model the number of state signals inflationary
increases from one of filter system to the next. This is because every input signal of a filter-system has to pass
each filter-element. Compared with the simple calculation of a time discrete equivalent of the filter-chain
model (Fig. 5) it is still possible but time consuming to get a time discrete equivalent of the bilinear model for
the use with sampled data since an exponential matrix must be calculated within every time step. But at least
with this approach an exact representation of the first N kernels is possible with N filter-systems
parameterized in relation to the eigenvalues of the linearized plant.

Summary

The superior structural properties of the filter-chain model have been worked out. The analysis of the
approximation task yields to suggestions for a suitable filter parametrization. Considering the importance of a
proper filter parametrization for a high approximation efficiency two different approaches are given for the
identification of a filter-chain model from sampled input-output data.
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